Journal of Organometallic Chemistry, 356 (1988) 39-47 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Zur Synthese von Siloxanen

XIV *. Die Umsetzung von Chlorsilanen mit Silanolen im sauren Medium

K. Rühlmann *, H. Grosse-Ruyken, D. Scheller,

Sektion Chemie der Technischen Universität Dresden, Mommsenstr. 13, Dresden, DDR-8027 (D.D.R.)

und U. Scheim

VEB Chemiewerk Nünchritz, Forschungsstelle Radebeul, Wilhelm-Pieck-Str. 35, Radebeul, DDR-8122 (D.D.R.)

(Eingegangen den 5. April 1988)

Abstract

The reactions of anyldimethylchlorosilanes with benzyldimethylsilanol in $C_6D_6/dioxane$ (2.8/1) have been investigated by ¹H NMR spectroscopy.

Fast substituent exchange reactions were observed in the presence of H_2O or HCl. In this process both substances establish chlorosilane/silanol equilibria which are related to the concentration of H_2O and HCl formed. A ρ -value of 1.3 was found for the reaction of substituted aryldimethylchlorosilanes with benzyldimethyl-silanol in the presence of H_2O .

In time the equilibria are disturbed by condensation processes.

Zusammenfassung

Die Umsetzungen von Aryldimethylchlorsilanen mit Benzyldimethylsilanol in $C_6 D_6 / Dioxan (2.8/1)$ konnten ¹H-NMR-spektroskopisch verfolgt werden.

Es wurde beobachtet, dass in Gegenwart von H_2O oder HCl rasche Substituenten-Austauschreaktionen ablaufen. Dabei bilden beide Substanzen Chlorsilan-Silanol-Gleichgewichte aus, die durch die sich einstellenden H_2O - und HCl-Konzentrationen miteinander verknüpft sind. Für die Umsetzung substituierter Aryldimethylchlorsilane mit Benzyldimethylsilanol in Gegenwart von Wasser wurde ein ρ -Wert von 1.3 gefunden.

^{*} XIII. Mitteilung siehe Ref. 1.

Im weiteren Verlauf werden die Gleichgewichte durch Kondensationsprozesse gestört.

Einleitung

Die Umsetzung von Chlorsilanen mit Silanolen im basischen Medium wird häufig zur eindeutigen Knüpfung von Siloxanbindungen genutzt [2]. Mehrfach wurde vermutet, dass die Heterokondensation von Chlorsilanen oder -siloxanen mit Silanolen oder Siloxanolen auch bei der im sauren Medium verlaufenden grosstechnischen Produktion von Polysiloxanen eine der Hauptreaktionen ist [2–9].

Vasil'eva e.a. [7] beobachteten, dass im System Chlorsilan/Silanol neben der Homokondensation von Silanolen und der Heterokondensation von Chlorsilanen mit Silanolen auch Austauschreaktionen des Typs 1 ablaufen.

$$\geq Si - Cl + \geq Si'OH \Rightarrow \geq SiOH + \geq Si'Cl$$
(1)

Die Gleichgewichtskonstanten für die Umsetzung von Ph₃SiOH mit Me₃SiCl (K = 0.0102) und von Ph₃SiOH mit MePh₂SiCl (K = 0.3828) wurden aus den ¹H-NMR Signalintensitäten berechnet. Der höhere Wert für das zweite Gleichgewicht wird nicht kommentiert, eine mechanistische Deutung nicht versucht.

Substituenten-Austauschreaktionen sind umfassend untersucht worden [10]. Für ihren Ablauf wurden oft 4-Zentren-Mechanismen (Gl. 2) formuliert [11–14].

$$\Rightarrow \mathbf{SiA} + \Rightarrow \mathbf{Si'B} = \left[\Rightarrow \mathbf{Si} \stackrel{\mathbf{A}}{\underset{\mathbf{B}}{\overset{\mathbf{Si'}}{\overset{\mathbf{B}}{\overset{\mathbf{B}}{\overset{\mathbf{Si'}}{\overset{\mathbf{B}}{\overset{\mathbf{Si'}}{\overset{\mathbf{B}}{\overset{\mathbf{Si'}}{\overset{\mathbf{B}}{\overset{\mathbf{Si'}}{\overset{\mathbf{B}}{\overset{\mathbf{Si'}}{\overset{\mathbf{B}}{\overset{\mathbf{Si'}}{\overset{\mathbf{Si'}}{\overset{\mathbf{B}}{\overset{\mathbf{Si'}}}{\overset{\mathbf{Si'}}{\overset{\mathbf{Si'}}}{\overset{\mathbf{Si'}}{\overset{\mathbf{Si'}}}{\overset{\mathbf{Si'}}{\overset{\mathbf{Si'}}}{\overset{\mathbf{Si'}}}{\overset{\mathbf{Si'}}}{\overset{\mathbf{Si'}}}{\overset{\mathbf{Si'}}}{\overset{\mathbf{Si'}}}{\overset{\mathbf{Si'}}}{\overset{\mathbf{Si'}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$$

Im Zusammenhang mit unseren Untersuchungen über die Hydrolyse von Chlorsiloxanen im sauren Medium [15] interessierte uns zum einen das Verhältnis der Geschwindigkeiten von Silanol/Chlorsilan-Austauschreaktionen zu denen der Kondensationsreaktionen und zum anderen der Mechanismus der Austauschreaktionen.

Experimentelles

Auswahl eines geeigneten Systems

Erste orientierende ¹H-NMR-Messungen im System Chlordimethylphenylsilan/ Dimethyltolylsilanol in Dioxan hatten ergeben, dass eine quantitative, kinetische Auswertung des Si-Cl/Si-OH-Austausches und der Kondensationsreaktionen aufgrund der zum Teil sehr dicht beieinander liegenden Signale für die Methylprotonen nicht möglich war. Insbesondere konnten die Signale für die Silanole und die korrespondierenden Disiloxane nicht vollständig getrennt werden (vgl. Ref. 7). Es zeigte sich jedoch, dass eine gute Auflösung aller Signale im Aryldimethylsilyl-Benzyldimethylsilyl-System erreicht werden kann, wenn Benzol als Lösungsmittel verwendet wird. Um eine ausreichende Löslichkeit für das sich bei Silanolkondensationen bildende Wasser zu sichern, wurde schliesslich ein $C_6 D_6$ /Dioxan-Gemisch (im Volumenverhältnis 2.8/1) eingesetzt. In Tabelle 1 sind die chemischen

Tabelle 1

R =	$\delta(RMe_2Si-X)$ (ppm)				
	$\overline{\mathbf{X} = \mathbf{Cl}}$	X = OH	$X = OSiMe_2R$	$X = OSiMe_2Bzl$	
p-Tolyl	0.654	0.505	0.459	0.404 0.178	
Phenyl	0.646	0.492	0.441	0.388 0.171	
p-FPhenyl	0.604	0.462	0.392	0.349 0.157	
<i>p</i> -ClPhenyl	0.588	0.444	0.371	0.334 0.157	
Benzyl	0.345	0.222	0.112	0.112	

Chemische Verschiebungen der Si-Methylprotonen in den Verbindungen RMe_2SiX (in $C_6D_6/Dioxan$ (2.8/1) gegen TMS extern)

Verschiebungen für die Silylmethylprotonen der in den untersuchten Systemen auftretenden Verbindungen zusammengestellt.

Darstellung der Substanzen

Die benötigten Chlortriorganylsilane mussten völlig frei von Si-Br-Anteilen sein, da Vorversuche zeigten, dass anderenfalls unkontrollierbare Störungen beim Si-Cl/ Si-OH-Austausch auftreten.

Chlordimethylphenylsilan (I)

Dichlordimethylsilan wurde mit Phenylmagnesiumbromid zu bromidhaltigem I umgesetzt, das durch Reduktion mit LiAlH₄ in Diethylether in Dimethylphenylsilan (Ausbeute: 56%, Kp 40°C/1.07 kPa, d_4^{20} 0.868, n_D^{20} 1.4991) übergeführt wurde. Durch Einleiten von Chlor in eine Lösung von Dimethylphenylsilan in CCl₄ wurde bromidfreies I erhalten (Ausbeute: 76%, Kp 74°C/1.73 kPa, d_4^{20} 1.015, n_D^{20} 1.5098, hydrolysierbares Chlor: 20.5% (gef.), 20.8% (ber.)).

Chlordimethyl-p-tolylsilan (II)

Aus *p*-Cl-Toluol in Tetrahydrofuran und Magnesium wurde das entsprechende Grignard-Reagens bereitet und zu einer Lösung von Dichlordimethylsilan in Pentan getropft. Die beim Einengen ausfallenden Magnesiumsalze wurden abgetrennt und das Filtrat fraktionierend destilliert (Ausbeute: 35%, Kp 85–86°C/1.07 kPa, d_4^{20} 0.993, hydrolysierbares Chlor: 19.2% (gef.), 19.2% (ber.)).

Chlor-p-chlorphenyl-dimethylsilan (III)

III wurde analog II aus *p*-Dichlorbenzol und Dichlordimethylsilan gewonnen (Ausbeute: 25%, Kp 130°C/4.0 kPa, d_4^{20} 1.151, hydrolysierbares Chlor: 17.0% (gef.), 17.3% (ber.)).

Benzylchlordimethylsilan (IV)

IV wurde durch die Umsetzung einer aus Benzylchlorid und Magnesium in Diethylether hergestellten Grignard-Lösung mit Dichlordimethylsilan gewonnen (Ausbeute: 50%, Kp 86°C/1.73 kPa, d_4^{20} 1.013, n_D^{20} 1.5112, hydrolysierbares Chlor: 18.9% (gef.), 19.2% (ber.)).

Benzyldimethylsilanol (V)

18.5 g (0.1 mol) IV in 150 ml Diethylether wurden bei 0°C langsam zu einem Gemisch aus 9.3 g (0.1 mol) Anilin, 1.8 g (0.1 mol) Wasser, 300 ml Diethylether und

100 ml Aceton gegeben. Der entstandene Niederschlag wurde abfiltriert und das Filtrat dreimal mit 200 ml Wasser gewaschen. Nach dem Trocknen der etherischen Phase mit Na₂SO₄ wurde das Lösungsmittel abgezogen und der Rückstand über eine 20 cm Vigreux-Kolonne fraktionierend destilliert (Ausbeute: 82%, Kp 68°C/13 Pa, d_4^{20} 0.974, n_D^{20} 1.5152).

Vorbehandlung der Lösungsmittel

Dioxan wurde mehrfach in Gegenwart von Natrium destilliert und anschliessend ebenso wie C_6D_6 und Diethylether über Natrium aufbewahrt. Für die H_2O - oder HCl-katalysierten Umsetzungen wurden 0.3 *M* H_2O - oder HCl-Lösungen in Dioxan hergestellt, die dann mit reinem Dioxan auf die gewünschte Konzentration verdünnt wurden. HCl wurde aus NaCl und konz. H_2SO_4 gewonnen.

Kinetische Messungen

Die Konzentration der Chlorsilane, Silanole und Disiloxane wurde mit Hilfe der ¹H-NMR-Spektroskopie anhand der Methylprotonensignale ermittelt. Für die Bestimmungen wurde ein 90 MHz-Spektrometer vom Typ WH 90 DS der Firma Bruker, Analytische Meßtechnik, GmbH, Karlsruhe, verwendet.

Die Ausgangskonzentration der Chlorsilane und Silanole betrug jeweils 0.2 mol 1^{-1} . Das Reaktionsmilieu bestand aus einem Gemisch von 350 μ l C₆D₆ und 125 μ l trockenem bzw. mit H₂O oder HCl dotiertem Dioxan. Die Messtemperatur betrug 30°C.

Messröhrchen und Dosierspritzen wurden in einem Exsikkator über P_4O_{10} aufbewahrt.

Die angegebenen experimentellen Geschwindigkeitskonstanten sind Mittelwerte aus jeweils 3 Messungen. Die Fehlergrenzen betragen 10...15%.

Ergebnisse und Diskussion

Kinetische Ergebnisse

Die ersten kinetischen Messungen wurden mit äquivalenten Mengen Chlorsilan und Silanol ohne Zusatz von H_2O oder HCl durchgeführt. Die Konzentrationsänderungen liessen sich gut mit einem Zeitgesetz 2. Ordnung auswerten. Es zeigte sich jedoch, daß die k-Werte von Messreihe zu Messreihe stark streuten. Da vermutet wurde, dass diese Effekte durch eingeschleppte Spuren von Wasser verursacht werden, wurden die folgenden Ansätze mit definierten Zusätzen von H_2O oder HCl durchgeführt.

Figur 1 gibt den zeitlichen Verlauf der Umsetzung von 0.2 mol 1^{-1} PhMe₂SiCl mit 0.2 mol 1^{-1} BzlMe₂SiOH in Gegenwart einer katalytischen Menge HCl wieder. Man erkennt deutlich, dass bis zu einer Reaktionszeit von 15 min Kondensationsvorgänge kaum ins Gewicht fallen. Damit wird zunächst die qualitative Aussage möglich, dass im System Aryldimethylchlorsilan/Benzyldimethylsilanol die Geschwindigkeit der Austauschreaktionen deutlich grösser ist als die Geschwindigkeit der Kondensationen. Man kann weiterhin sehen, dass das PhMe₂SiCl + BzlMe₂SiOH + BzlMe₂SiCl-Gleichgewicht zugunsten des Paares PhMe₂SiOH + BzlMe₂SiCl verschoben ist. Eine quantitative Auswertung des Gesamtprozesses erwies sich als nicht möglich, da die einem Gleichgewichtszustand zustrebende Austauschreaktion durch Kondensationsprozesse gestört wird, in deren

Fig. 1. Umsetzung von 0.2 mol 1^{-1} PhMe₂SiCl mit 0.2 mol 1^{-1} BzlMe₂SiOH in Gegenwart von 0.0025 mol 1^{-1} HCl in C₆D₆/Dioxan (2.8/1) bei 30°C. 1: PhMe₂SiOH; 2: PhMe₂SiCl; 3: PhMe₂SiOSiMe₂Ph; 4: PhMe₂SiOSiMe₂Bzl (die Konzentrations-Zeit-Kurven der entsprechenden BzlMe₂Si-Verbindungen wurden der Übersichtlichkeit wegen nicht mit eingezeichnet).

Verlauf Wasser und damit, über die Hydrolyse von Chlorsilanen, auch HCl entsteht.

Es gelang jedoch, bei der Umsetzung von 0.2 mol 1⁻¹ PhMe₂SiCl mit 0.2 mol 1⁻¹ BzlMe₂SiOH in Gegenwart von 0.0025 mol 1⁻¹ H₂O, die Konzentrationsänderungen bis über 10 min mit einem Zeitgesetz 2. Ordnung auszuwerten (Fig. 2). Die ermittelten k-Werte für die Abnahme der PhMe₂SiCl- (k_{exp} 0.065 1 mol⁻¹ min⁻¹) und die Abnahme der BzlMe₂SiOH-Konzentration (k_{exp} 0.059 1 mol⁻¹ min⁻¹) sind innerhalb der Fehlergrenze gleich.

Im folgenden wurden, um Störungen durch Gleichgewichtseinstellungen und Kondensationen zu vermeiden, stets die Anfangsgeschwindigkeiten der Chlorsilanoder Silanolabnahme ermittelt. Figur 3 zeigt die Abhängigkeit der daraus erhaltenen Geschwindigkeitskonstanten von der HCl und von der H₂O Konzentration. In beiden Fällen geht bei Abnahme der Katalysatorkonzentration gegen 0 auch die Geschwindigkeit der Austauschreaktion gegen 0.

Tabelle 2 enthält die Geschwindigkeitskonstanten für den Cl/OH-Austausch im System ArMe₂SiCl/BzlMe₂SiOH in Gegenwart katalytischer Mengen H₂O. Es zeigt sich, dass elektronenziehende Gruppen am Si-Atom des Chlorsilans die Austauschreaktion beschleunigen. Die Korrelation der lg k-Werte mit σ -Werten nach Hammett ergab einen ρ -Wert von +1.3 (Fig. 4). Eine Wiederholung der Versuche mit einer höheren Katalysatorkonzentration (0.02 mol 1⁻¹ H₂O) bestätigte diese Befunde im wesentlichen. Lediglich die Geschwindigkeitskonstante für die Umsetzung von p-TolMe₂SiCl mit BzlMe₂SiOH weicht deutlich zu höheren Werten ab (vgl. Tabelle 2). Offenbar setzt in diesem Fall die Kondensation rascher als bei den anderen Aryldimethylchlorsilanen ein, so dass die Wasserkonzentration schon

Fig. 2. Umsetzung von 0.2 mol 1^{-1} PhMe₂SiCl mit 0.2 mol 1^{-1} BzlMe₂SiOH in Gegenwart von 0.0025 mol 1^{-1} H₂O in C₆D₆/Dioxan (2.8/1) bei 30 °C. (1(•) PhMe₂SiCl, 2(×) BzlMe₂SiOH.

frühzeitig erhöht wird, wodurch die Austauschgeschwindigkeit ansteigt. In den anderen Fällen verläuft die Kondensation wiederum so langsam, dass die Einstellung der Austauschgleichgewichte zu Beginn kaum gestört wird (Fig. 5 und 6).

Aus den Gleichgewichtslagen der Systeme von BzlMe₂SiOH mit p-Cl- und p-F-C₆H₄Me₂SiCl und den allerdings nur sehr grob abschätzbaren K-Werten für die Systeme mit p-TolMe₂SiCl und PhMe₂SiCl lässt sich für die Gleichgewichtskonstante K (Tab. 2) bei Variation des Arylrestes im Aryldimethylchlorsilan ein schwach positiver ρ -Wert (in der Grössenordnung von +0.5) ableiten.

Fig. 3. Abhängigkeit der experimentellen Geschwindigkeitskonstanten für die Umsetzung von $PhMc_2SiCl$ mit BzlMe₂SiOH von der H₂O- und der HCl-Anfangskonzentration.

Tabelle 2

Ar	$[H_2O]_0$ (mol l ⁻¹)	$\frac{k_{exp} \times 10^3}{(l \text{ mol}^{-1} \text{ s}^{-1})}$	$\frac{k}{(l^2 \text{ mol}^{-2} \text{ s}^{-1})}$	K
Ph	0.0025	1.0	0.40	1.4
	0.0050	2.7	0.54	
	0.0075	3.9	0.52	
p-ClPh	0.0050	3.6	0.72	1.8
	0.020	17	0.85	
p-Tol	0.0050	0.97	0.20	1.1
	0.020	10	0.50	
<i>p</i> -FPh	0.020	8.5	0.42	1.4

Geschwindigkeits- und Gleichgewichtskonstanten für die Umsetzungen von Aryldimethylchlorsilanen mit Benzyldimethylsilanol: $k = k_{exp} / [H_2O]_0$, T 30°C, $[ArMe_2SiCI]_0 = [BzIMe_2SiOH]_0 = 0.2 \text{ mol } 1^{-1}$

Diskussion der Ergebnisse

Bei der Umsetzung von Aryldimethylchlorsilanen mit Benzyldimethylsilanol laufen rasche, durch Wasser oder Chlorwasserstoff katalysierte Substituenten-Austauschreaktionen ab.

$$ArMe_2SiCl + BzlMe_2SiOH \xrightarrow{HCl/H_2O} ArMe_2SiOH + BzlMe_2SiCl$$
(3)

Gegen den oft vermuteten 4-Zentren-Mechanismus spricht zum einen, dass ohne Spuren von Wasser oder Chlorwasserstoff keine Umsetzung eintritt (vgl. auch Ref. 5), zum anderen, dass die Geschwindigkeit der Gleichgewichtseinstellung durch induktive Substituenteneffekte deutlich beeinflusst wird (ρ +1.3). Alle Ergebnisse deuten darauf hin, dass sich bei beiden Substanzen Chlorsilan/Silanol-Gleichgewichte ausbilden [6,16,17], die untereinander durch die sich einstellende ArMe₂SiCl + H₂O \Rightarrow ArMe₂SiOH + HCl

$$BzIMe_{2}SiOH + HCI \rightleftharpoons BzIMe_{2}SiCI + H_{2}O$$
(4)

 H_2O - und HCl-Konzentration gekoppelt sind (vgl. dazu Ref. 18,19). Der abgeschätzte schwach positive ρ -Wert für die Gleichgewichtskonstanten K bei Variation von Ar

$$K = \frac{[\text{ArMe}_2\text{SiOH}] \cdot [\text{BzlMe}_2\text{SiCl}]}{[\text{ArMe}_2\text{SiCl}] \cdot [\text{BzlMe}_2\text{SiOH}]}$$

Fig. 4. Korrelation der 1g k-Werte für die Umsetzung von $0.2 \text{ mol } l^{-1} p$ -XC₆H₄SiMe₂Cl mit $0.2 \text{ mol } l^{-1}$ BzlMe₂SiOH mit den Hammett- σ -Werten für X. 1: p-TolMe₂SiCl, 2: PhMe₂SiCl, 3: p-FPhMe₂SiCl, 4: p-ClPhMe₂SiCl.

Fig. 5. Umsetzung von 0.2 mol l^{-1} *p*-TolMe₂SiCl mit 0.2 mol l^{-1} BzlMe₂SiOH in Gegenwart von 0.02 mol l^{-1} H₂O in C₆D₆/Dioxan (2.8/1) bei 30 °C. 1: *p*-TolMe₂SiOH; 2: *p*-TolMe₂SiOSiMe₂-*p*-Tol; 3: *p*-TolMe₂SiCl; 4: *p*-TolMe₂SiOSiMe₂Bzl; 5: BzlMe₂SiOSiMe₂Bzl; 6: BzlMe₂SiOH; 7: BzlMe₂SiOSiMe₂SiOSiMe₂-*p*-Tol; 8: BzlMe₂SiCl.

Fig. 6. Umsetzung von 0.2 mol 1^{-1} *p*-FPhMe₂SiCl mit 0.2 mol 1^{-1} BzlMe₂SiOH in Gegenwart von 0.02 mol 1^{-1} H₂O in C₆D₆/Dioxan (2.8/1) bei 30 °C. 1: *p*-FPhMe₂SiOSiMe₂Bzl; 2: *p*-FPhMe₂SiOSiMe₂-*p*-FPh; 3: *p*-FPhMe₂SiCl; 4: *p*-FPhMe₂SiOH; 5: BzlMe₂SiOSiMe₂Bzl; 6: BzlMe₂SiOSiMe₂-*p*-FPh; 7: BzlMe₂SiOH, 8: BzlMe₂SiCl.

spricht dafür, dass elektronenziehende Gruppen im Arylrest die Bildung des Silanols begünstigen (vgl. [20]).

Da ähnliche Gleichgewichtseinstellungen bei zahlreichen anderen nucleophilen Reaktionen mit Siliciumverbindungen beobachtet wurden [21–25], vermuten wir, dass auch andere Substituenten-Austauschreaktionen dem gleichen mechanistischen Schema (vgl. Gl. 4) gehorchen:

 $\Rightarrow Si^{1}X + HY \Rightarrow \Rightarrow Si^{1}Y + HX$ $\Rightarrow Si^{2}Y + HX \Rightarrow \Rightarrow Si^{2}X + HY$

(5)

Sehr viel langsamer als die Einstellung der Chlorsilan-Silanol-Gleichgewichte verlaufen die Kondensationsprozesse. Das bisher vorliegende Material gestattet keine Aussagen zu dem Verhältnis von Hetero- zu Homokondensation.

Literatur

- 1 J. Brumme, H. Grosse-Ruyken, K. Rühlmann und A. Porzel, Plaste und Kautschuk, im Druck.
- 2 W. Noll, Chemie und Technologie der Silicone, 2. Aufl., Verlag Chemie, Weinheim, 1968, S. 174.
- 3 W.C. Schumb und A.J. Stevens, J. Am. Chem. Soc., 72 (1950) 3178.
- 4 L.H. Shaffer und E.M. Flanigen, J. Phys. Chem., 61 (1957) 1591 und 1595.
- 5 J.H. Cameron, T.A. Kleinhenz und M.C. Hawley, Ind. Eng. Fund., 14 (1975) 328.
- 6 M.G. Voronkov und L.A. Zhagata, Zh. Obshch. Khim., 41 (1971) 1776.
- 7 T.V. Vasil'eva, V.Ya. Stolyarenko, G.N. Yakovleva und V.V. Yastrebov, Zh. Obshch. Khim., 52 (1982) 2570.
- 8 V.G. Sagitova und V.I. Chernyak, Zh. Obshch. Khim., 53 (1983) 397.
- 9 P.V. Ivanov, N.I. Gelperin und V.V. Kireev, Khim. Prom-st., (1985) 444 (60).
- 10 K. Moedritzer, Organomet. Chem. Rev., 1 (1966) 179; Advan. Organomet. Chem., (1968) 171.
- 11 H. Weingarten und J.R. Van Wazer, J. Am. Chem. Soc., 88 (1966) 2700.
- 12 D.H. O'Brien und Th.J. Hairston, Organomet. Chem., Rev. A, 7 (1971) 95.
- 13 D. Hass und O. Bechstein, Z. Chem., 21 (1981) 237.
- 14 L. Engelbrecht und G. Sonnek, Plaste und Kautschuk, 30 (1983) 362.
- 15 K. Rühlmann, J. Brumme, U. Scheim und H. Grosse-Ruyken, J. Organomet. Chem., 291 (1985) 165.
- 16 K.K. Popkov, Zh. Prikl. Spectr., 13 (1970) 318.
- 17 J.H. Cameron, Dissertation, Michigan State Univ., 1975.
- 18 R. Lehnert, A. Porzel und K. Rühlmann, Z. Chem., 28 (1988) 190.
- 19 S. Jähnichen, K. Rühlmann, R. Lehnert, A. Porzel und U. Scheim, J. Organomet. Chem., in Vorbereitung.
- 20 J.F. Hyde, P.L. Brown und A. Lee Smith, J. Am. Chem. Soc., 82 (1960) 5854.
- 21 L.H. Sommer, Stereochemistry, Mechanism and Silicon, McGraw-Hill Book Company, New York, St. Louis, San Francisco, Toronto, London, Sidney, 1965, S. 138–143.
- 22 J.A. Gibson und A.F. Janzen, Canad. J. Chem., 50 (1972) 3087.
- 23 A.I. Chernyshev und V.V. Yastrebov, Zh. Obshch. Khim., 41 (1971) 714.
- 24 V.V. Yastrebov und A.I. Chernyshev, Zh. Obshch. Khim., 41 (1971) 713; Kin. Katal., 14 (1975) 933; Teor. Eksp. Khim., 10 (1974) 82.
- 25 V.S. Kolobkov und O.V. Utkin, Zh. Prikl. Khim., 54 (1981) 671.